Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(Suppl 1): 744, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255507

RESUMO

During the summer of 2015, four 4D seismic surveys were conducted on the northeastern Sakhalin shelf near the feeding grounds of the Korean-Okhotsk (western) gray whale (Eschrichtius robustus) population. In addition to the seismic surveys, onshore pile driving activities and vessel operations occurred. Forty autonomous underwater acoustic recorders provided data in the 2 Hz to15 kHz frequency band. Recordings were analyzed to evaluate the characteristics of impulses propagating from the seismic sources. Acoustic metrics analyzed comprised peak sound pressure level (PK), mean square sound pressure level (SPL), sound exposure level (SEL), T100%, T90% (the time intervals that contain the full and 90% of the energy of the impulse), and kurtosis. The impulses analyzed differed significantly due to the variability and complexity of propagation in the shallow water of the northeast Sakhalin shelf. At larger ranges, a seismic precursor propagated in the seabed ahead of the acoustic impulse, and the impulses often interfered with each other, complicating analyses. Additional processing of recordings allowed evaluation and documentation of relevant metrics for pile driving, vessel sounds, and ambient background levels. The computed metrics were used to calibrate acoustic models, generating time resolved estimates of the acoustic levels from seismic surveys, pile driving, and vessel operations on a gray whale distribution grid and along observed gray whale tracks. This paper describes the development of the metrics and the calibrated acoustic models, both of which will be used in work quantifying gray whale behavioral and distribution responses to underwater sounds and to determine whether these observed responses have the potential to impact important parameters at the population level (e.g., reproductive success).


Assuntos
Monitoramento Ambiental , Som , Animais , Baleias/fisiologia , Acústica , Água
2.
Environ Monit Assess ; 194(Suppl 1): 745, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255548

RESUMO

Exxon Neftegas Ltd. (ENL) carried out three 4D seismic surveys during the summer of 2015. Seismic operations in two of these fields (Odoptu and Chayvo) ensonified the nearshore feeding area of Korean-Okhotsk (western) gray whales (Eschrichtius robustus), potentially disturbing feeding activities. Following model-based optimization of the source design to minimize its lateral acoustic footprint, pre-season modeling was used to compute the acoustic exposure along each survey line. Real-time acoustic data facilitated implementation of mitigation measures aimed to minimize disturbance of whales. Acoustic data originated from underwater recorders deployed on the seafloor. Two complementary approaches were used to transmit recorded sound data to a computer housed at the Central Post (CP), where decisions regarding mitigation shut downs were made. In the first approach, a limited bandwidth (2-2000 Hz) sampling of the data was transmitted via cable to a surface buoy, which relayed these data to a shore station up to 15 km away via digital VHF telemetry. At the shore station, acoustic impulses from the seismic surveys were processed to compute impulse characteristics in the form of estimates of sound exposure level and peak sound pressure level, as well as one-minute-average 1/3-octave power spectral density coefficients, which were then transmitted to the CP via the internet. In the second, the pulse characteristics were computed through algorithms running on an onboard processor in each recorder's surface buoy and sent directly to the CP computer via an Iridium satellite uplink. Both methods of data transfer proved viable, but Iridium transmission achieved the goal without the need for any shore based relay stations and is therefore more operationally efficient than VHF transmission. At the CP, analysts used the real-time acoustic data to calibrate and adjust the output of pre-season acoustical model runs. The acoustic footprint for the active seismic source, advancing synchronously with the motion of the seismic vessel and changing as the sound propagation environment changed, was computed from the calibrated and adjusted model output and integrated through the software Pythagoras with locations of gray whales provided by shore-based observers. This enabled analysts to require air gun array shutdowns before whales were exposed to mean square sound pressure levels greater than the behavioral response threshold of 163 dB re 1 µPa2. The method described here provides a realistic means of mitigating the possible effects of air guns at a behavioral response level, whereas most seismic surveys rely on pre-established mitigation radii to manage the risk of injury to a whale.


Assuntos
Monitoramento Ambiental , Irídio , Animais , Monitoramento Ambiental/métodos , Baleias/fisiologia , Acústica , Som , Telemetria
3.
Sci Rep ; 11(1): 2417, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510310

RESUMO

Nonstoichiometric silicon nitride SiNx is a promising material for developing a new generation of high-speed, reliable flash memory device based on the resistive effect. The advantage of silicon nitride over other dielectrics is its compatibility with the silicon technology. In the present work, a silicon nitride-based memristor deposited by the plasma-enhanced chemical vapor deposition method was studied. To develop a memristor based on silicon nitride, it is necessary to understand the charge transport mechanisms in all states. In the present work, it was established that the charge transport in high-resistance states is not described by the Frenkel effect model of Coulomb isolated trap ionization, Hill-Adachi model of overlapping Coulomb potentials, Makram-Ebeid and Lannoo model of multiphonon isolated trap ionization, Nasyrov-Gritsenko model of phonon-assisted tunneling between traps, Shklovskii-Efros percolation model, Schottky model and the thermally assisted tunneling mechanisms. It is established that, in the initial state, low-resistance state, intermediate-resistance state and high-resistance state, the charge transport in the forming-free SiNx-based memristor is described by the space charge limited current model. The trap parameters responsible for the charge transport in various memristor states are determined.

4.
Nanotechnology ; 31(50): 505704, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021224

RESUMO

THe memristor is a key memory element for neuromorphic electronics and new generation flash memories. One of the most promising materials for memristor technology is silicon oxide SiO x , which is compatible with silicon-based technology. In this paper, the electronic structure and charge transport mechanism in a forming-free SiO x -based memristor fabricated with the plasma enhanced chemical vapor deposition method is investigated. The experimental current-voltage characteristics measured at different temperatures in high-resistance, low-resistance and intermediate states are compared with various charge transport theories. The charge transport in all states is limited by the space charge-limited current model. The trap parameters, responsible for the charge transport in a SiO x -based memristor in different states, are determined.

5.
Nanotechnology ; 29(42): 425202, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30020078

RESUMO

The atomic and electronic structure of nonstoichiometric amorphous tantalum oxide (TaO x ) films of different composition has been investigated by means of electron microscopy, x-ray photoelectron spectroscopy, Raman and infrared spectroscopy. The dispersion of the absorption coefficient and refraction index has been studied by spectral ellipsometry. The optical spectra were interpreted using the results of a quantum-chemical simulation for crystalline orthorhombic TaO x . It was found that the presence of oxygen vacancies in the oxygen-deficient TaO x film show an optical absorption peak at 4.6 eV. It has been established that TaO x consists of stoichiometric Ta2O5, metallic Ta clusters less than 20 nm in size, and tantalum suboxides TaO y (y < 2.5). The model of nanoscale potential fluctuations of TaO x bandgap in the range of 0-4.2 eV is proposed and justified. The design of the flash memory element based on the effect of localization of electrons and holes in Ta metallic nanoclusters in the TaO x matrix is proposed.

6.
ACS Appl Mater Interfaces ; 10(4): 3769-3775, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308879

RESUMO

Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaOx films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaOx by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaOx conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaOx films is phonon-assisted tunneling between the traps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...